Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils
نویسندگان
چکیده
In this work, the fluorescence of thioflavin T (ThT) was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0). The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.
منابع مشابه
Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils
In this work two modes of binding of the fluorescent probe thioflavin T to yeast prion protein Sup35p amyloid fibrils were revealed by absorption spectrometry of solutions prepared by equilibrium microdialysis. These binding modes exhibited significant differences in binding affinity and stoichiometry. Moreover, the absorption spectrum and the molar extinction coefficient of the dye bound in ea...
متن کاملInhibitory Effect of Cinnamomum Zeylanicum and Camellia Sinensis Extracts on the Hen EggWhite Lysozyme Fibrillation
Background & Aims: Many neurodegenerative diseases including Alzheimer’s, Parkinson and Huntington diseases are associated with the deposition proteinaceous aggregates known as amyloid fibrils. Currently, there is no approved therapeutic agent for inhibition of fibrillar assemblies. One important approach in the development of therapeutic agents is the use of herbal extracts. At the present com...
متن کاملDetection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy.
Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generatio...
متن کاملEvaluation and Characterization of Free and Immobilized Acethylcholinesterase with Fluorescent Probe, Differential Scanning Calorimetry and Docking
Acetylcholinesterase (AChE) enzyme which catalyses the hydrolysis of choline esters, such as acetylcholine, is very important in nerve function. Previous structural studies showed the possible amyloid fibril formation on the AChE. Therefore it is important to understand interaction of ligands to prevent the formation of amyloid fibrils. The purpose of the present study was to char...
متن کاملThioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation
Formation of amyloid fibrils underlies a wide range of human disorders, including Alzheimer's and prion diseases. The amyloid fibrils can be readily detected thanks to thioflavin T (ThT), a small molecule that gives strong fluorescence upon binding to amyloids. Using the amyloid fibrils of Aβ40 and Aβ42 involved in Alzheimer's disease, and of yeast prion protein Ure2, here we study three aspect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010